Data Mining for Business Analytics

...
15 341 ₽Скидка: 13%

13 324 ₽

Товар в наличии
Ещё от "ЛитРес":
  Узнать о снижении стоимости
Отправим письмо при снижении стоимости.

Рекомендательный сервис

  • Общий рейтинг 4.79
  • Рейтинг покупателей 4.96
  • Рейтинг экспертов 4.77
  • Качество материалов 4.96
  • Надежность 4.77
  • Простота в использовании 4.67
  • Ремонтопригодность 4.39
  • Эффективность выполнения своих функций 4.39
  • Коэффициент удивления "Вау!" 4.79
  • Безопасность для пользователя4.67
  • Внешний вид 4.97
  • Удобство в уходе и чистке 4.63
  • Экологическая безопасность 4.70
  • Гарантия на товар 4.66
  • Соответствие стандартам качества 4.77
  • Инновационные технологии 4.60
  • Хит продаж 4.79
  • Скорость морального устаревания 4.93
  • Энергоэффективность 4.37
  • Универсальность использования 4.99
  • Наличие дополнительных функций 4.60
  • Соотношение цена-качество 4.76
  • Практичность и удобство хранения 4.97
  • Стабильность работы в различных условиях 4.06
  • Возможность персонализации 4.09
  • Ликвидность 4.37
  • Индекс рекомендаций 4.66
2438 покупателей и эксперты портала 1ya.ru рекомендуют к покупке товар «Data Mining for Business Analytics» или его аналог из списка ниже.
Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American St
Информация о характеристиках, комплекте поставки, стране изготовления, внешнем виде и цвете товара носит справочный характер и взятая из открытых источников или размещена продавцом. Цена указана на дату: 09.05.2025 г. На текущий момент стоимость может отличаться. Предложение не является публичной офертой.
Эксперт: Святослав В., товарный критик
Дата рецензии: 15 июня 2025 г.
Рекомендация к покупке положительная

Отзывы о товаре

Спасибо Ваш отзыв будет опубликован после проверки модераторами.
Добавить отзыв

Доставка покупки

    • В электронном виде;
    • Читать онлайн;
    • Скачать на компьютер или мобильные устройства.

Оплата заказа

    • Банковской картой;
    • электронными деньгами Яндекс-Деньги; WebMoney, Qiwi Кошелек, PayPal;
    • Наличными через терминалы;
    • Банковским переводом.
  • Наименование: ООО «ЛитРес»
  • ИНН: 7719571260

Рекомендуем аналогичные товары

Дополнительно из категории