Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn

...Нажми для увеличения фото

Рекомендательный сервис

  • Общий рейтинг 4.92
  • Рейтинг покупателей 3.27
  • Рейтинг экспертов 4.69
  • Качество материалов 4.26
  • Надежность 4.99
  • Простота в использовании 4.66
  • Ремонтопригодность 4.75
  • Эффективность выполнения своих функций 4.72
  • Коэффициент удивления "Вау!" 4.92
  • Безопасность для пользователя4.79
  • Внешний вид 4.56
  • Удобство в уходе и чистке 4.67
  • Экологическая безопасность 4.62
  • Гарантия на товар 4.66
  • Соответствие стандартам качества 4.96
  • Инновационные технологии 4.60
  • Хит продаж 4.92
  • Скорость морального устаревания 4.27
  • Энергоэффективность 4.76
  • Универсальность использования 4.26
  • Наличие дополнительных функций 4.62
  • Соотношение цена-качество 3.66
  • Практичность и удобство хранения 4.29
  • Стабильность работы в различных условиях 4.27
  • Возможность персонализации 4.06
  • Ликвидность 4.79
  • Индекс рекомендаций 3.66
Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения. Книга наполнена четкими пояснениями, визуальными представлениями, работающими примерами и детально раскрывает все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения. Третье издание книги обновлено с целью учета версии библиотеки TensorFlow 2 и последних добавлений в scikit-learn. Оно расширено для охвата двух самых современных методик машинного обучения: обучения с подкреплением и порождающих состязательных сетей. Эта книга — ваш попутчик в машинном обучении с применением Python, будь вы разработчиком приложений на языке Python, не знакомым с машинным обучением, или разработчиком, желающим углубить свои знания в современных областях. Основные темы книги Фреймворки, модели и методики, которые позволяют машинам "учиться" на основе данных Использование scikit-learn для машинного обучения и TensorFlow для глубокого обучения Применение машинного обучения для классификации изображений, смыслового анализа, создания интеллектуальных веб-приложений и многого другого Построение и обучение нейронных сетей, порождающих состязательных сетей и других моделей Реализация веб-приложений с искусственным интеллектом Выполнение очистки и подготовки данных для машинного обучения Классификация изображений с использованием глубоких сверточных нейронных сетей Рекомендуемые приемы для оценки и настройки моделей Прогнозирование непрерывных целевых результатов с использованием регрессионного анализа Обнаружение скрытых шаблонов и структуры в данных с помощью кластеризации Углубление в текстовые данные и данные социальных сетей с применением смыслового анализа Прикладное машинное обучение с прочным теоретическим фундаментом. Новое издание пересмотрено и расширено с целью охвата TensorFlow 2, порождающих состязательных сетей (GAN) и обучения с подкреплением. Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения. Книга наполнена четкими пояснениями, визуальными представлениями и работающими примерами, детально раскрывая все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения. Обновленное с учетом библиотеки TensorFlow 2.0 третье издание предлагает читателям ознакомиться с ее новыми средствами API-интерфейса Keras, а также с последними добавлениями в scikit-learn. Оно расширено для охвата самых современных методик обучения с подкреплением, основанных на глубоком обучении, и введения в порождающие состязательные сети. Наконец, в книге также проводится исследование подобласти обработки естественного языка (NLP), называемой смысловым анализом, что поможет вам использовать алгоритмы машинного обучения для классификации документов. Книга обсуждается в отдельном сообщении в блоге Виктора Штонда. 3-е издание.
Информация о характеристиках, комплекте поставки, стране изготовления, внешнем виде и цвете товара носит справочный характер и взятая из открытых источников.
Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn продается в интернет-магазине Лабиринт
Эксперт: Святослав В., товарный критик
Дата рецензии: 22 июля 2025 года
Рекомендация к покупке нейтральная

Доставка покупки

    • Курьерская доставка в г. Москва;
    • Самовывоз из пункта выдачи.

Оплата заказа

  • Наличный расчет, оплата подарочным сертификатом, через мобильный телефон, наложенный платеж, предоплата на счет, электронные формы оплаты, пластиковые карты, баланс.
  • Наименование: ООО «Лабиринт.РУ»
  • ИНН: 7728644571

Часто задаваемые вопросы

Оплатить покупку возможно банковскими картами, банковским переводом, наличными при получении. Перечень всех способов оплаты доступен при оформлении заказа.
Заказ может быть доставлен курьерской службой, транспортными компаниями, Почтой России. Возможен самовывоз из пунктов выдачи и постаматов. Способ доставки выбирается при оформлении заказа.
Сроки доставки зависят от региона. Обычно это от 1 до 7 рабочих дней. Транспортировка в отдаленные регионы или позиций "под заказ" может достигать до 1 месяца. Точную информацию можно уточнить в карточке товара или у менеджера.
Да, в соответствии с законом «О защите прав потребителя» вы можете вернуть товар в течение 14 дней, если он не был в употреблении и сохранена упаковка.
Да, на большинство товаров предоставляется гарантия от производителя. Срок гарантии указан в описании товара.

Рекомендуем аналогичные товары

Дополнительно из категории