Введение в статистическое обучение с примерами на языке R

...

Рекомендательный сервис

  • Общий рейтинг 4.22
  • Рейтинг покупателей 3.27
  • Рейтинг экспертов 4.82
  • Качество материалов 4.27
  • Надежность 4.22
  • Простота в использовании 4.78
  • Ремонтопригодность 4.46
  • Эффективность выполнения своих функций 4.42
  • Коэффициент удивления "Вау!" 4.22
  • Безопасность для пользователя4.72
  • Внешний вид 4.68
  • Удобство в уходе и чистке 4.74
  • Экологическая безопасность 4.86
  • Гарантия на товар 4.77
  • Соответствие стандартам качества 4.28
  • Инновационные технологии 4.74
  • Хит продаж 4.22
  • Скорость морального устаревания 4.24
  • Энергоэффективность 4.48
  • Универсальность использования 4.20
  • Наличие дополнительных функций 4.76
  • Соотношение цена-качество 3.87
  • Практичность и удобство хранения 4.22
  • Стабильность работы в различных условиях 4.67
  • Возможность персонализации 4.00
  • Ликвидность 4.42
  • Индекс рекомендаций 3.77
Книга представляет собой доступно изложенное введение в статистическое обучение - незаменимый набор инструментов, позволяющих извлечь полезную информацию из больших и сложных наборов данных, которые начали возникать в последние 20 лет в таких областях, как биология, экономика, маркетинг, физика и др. В этой книге описаны одни из наиболее важных методов моделирования и прогнозирования, а также примеры их практического применения. Рассмотренные темы включают линейную регрессию, классификацию, создание повторных выборок, регуляризацию, деревья решений, машины опорных векторов, кластеризацию и др. Описание этих методов сопровождается многочисленными иллюстрациями и практическими примерами. Поскольку цель этого учебника заключается в продвижении методов статистического обучения среди практикующих академических исследователей и промышленных аналитиков, каждая глава включает примеры практической реализации соответствующих методов с помощью R - чрезвычайно популярной среды статистических вычислений с открытым кодом. Издание рассчитано на неспециалистов, которые хотели бы применять современные методы статистического обучения для анализа своих данных. Предполагается, что читатели ранее прослушали лишь курс по линейной регрессии и не обладают знаниями матричной алгебры. Гарет Джеймс занимает должность профессора статистики в университете Южной Калифорнии. Он является автором многочисленных методологических работ в области статистического обучения, посвященных анализу многомерных данных. Концепция настоящей книги во многом отражает содержание его курса по этой теме для студентов, обучающихся по специальности "магистр делового администрирования". Даниэла Уиттон является специалистом в области биостатистики и занимает должность ассистента в университете Вашингтона. Ее исследовательская работа в основном посвящена применению методов машинного обучения для анализа многомерных данных. Благодаря ее вкладу, методы машинного обучения стали более широко применяться в геномных исследованиях. Тревор Хасти и Роберт Тибширани являются профессорами статистики в Стэнфордском Университете, соавторами популярной книги "Элементы статистического обучения" и создателями обобщенных аддитивных моделей. Проф. Хасти внес также большой вклад в разработку статистического программного обеспечения на языках R и S-PLUS и создал методы "главных кривых" и "главных поверхностей". Проф. Тибширани предложил метод лассо и является одним из авторов популярной книги "Введение в бутстреп". 2-е издание, исправленное.
Информация о характеристиках, комплекте поставки, стране изготовления, внешнем виде и цвете товара носит справочный характер и взятая из открытых источников.
Введение в статистическое обучение с примерами на языке R продается в интернет-магазине Лабиринт
Эксперт: Ростислав Т., специалист по потребительским товарам
Дата рецензии: 21 июля 2025 года
Рекомендация к покупке нейтральная

Отзывы о товаре

Спасибо Ваш отзыв будет опубликован после проверки модераторами.
Добавить отзыв

Доставка покупки

    • Курьерская доставка в г. Москва;
    • Самовывоз из пункта выдачи.

Оплата заказа

  • Наличный расчет, оплата подарочным сертификатом, через мобильный телефон, наложенный платеж, предоплата на счет, электронные формы оплаты, пластиковые карты, баланс.
  • Наименование: ООО «Лабиринт.РУ»
  • ИНН: 7728644571

Часто задаваемые вопросы

Оплатить покупку возможно банковскими картами, банковским переводом, наличными при получении. Перечень всех способов оплаты доступен при оформлении заказа.
Заказ может быть доставлен курьерской службой, транспортными компаниями, Почтой России. Возможен самовывоз из пунктов выдачи и постаматов. Способ доставки выбирается при оформлении заказа.
Сроки доставки зависят от региона. Обычно это от 1 до 7 рабочих дней. Транспортировка в отдаленные регионы или позиций "под заказ" может достигать до 1 месяца. Точную информацию можно уточнить в карточке товара или у менеджера.
Да, в соответствии с законом «О защите прав потребителя» вы можете вернуть товар в течение 14 дней, если он не был в употреблении и сохранена упаковка.
Да, на большинство товаров предоставляется гарантия от производителя. Срок гарантии указан в описании товара.

Рекомендуем аналогичные товары

Дополнительно из категории